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Brazil has experienced one of the world’s most rapidly-
growing COVID-19 epidemics, with the Amazon being the 
worst hit region (1). Manaus is the capital and largest me-
tropolis in the Amazon, with a population of over two mil-
lion and population density of 158 inhabitants/km2. The first 
SARS-CoV-2 case in Manaus was confirmed on 13th March 
2020 (2) and was followed by an explosive epidemic, peak-
ing in early May with 4.5-fold excess mortality (3). This was 
followed by a sustained drop in new cases despite relaxation 
of non-pharmaceutical interventions (NPIs). The prevalence 
of antibodies against SARS-CoV-2 is an estimate of the at-
tack rate in Manaus and provides a data-based estimate of 

the extent of COVID-19 spread in the absence of effective 
mitigation. 

Given a basic reproduction number (R0) of 2.5–3.0 for 
Amazonas state, (see (4)), the expected attack rate during an 
unmitigated epidemic in a homogeneously mixed popula-
tion is 89–94% (5). When the percentage of infected people 
exceeds the herd immunity threshold of 60–67% [100 × (1 – 
1/R0)], each infection generates fewer than one secondary 
case (case reproduction number, Rt < 1) and incidence de-
clines. The goal of this study was to measure the SARS-CoV-
2 attack rate in Manaus and to explore whether the epidem-
ic was contained (Rt < 1) because infection reached the herd 
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SARS-CoV-2 spread rapidly in the Brazilian Amazon and the attack rate there is an estimate of the final 
size of a largely unmitigated epidemic. We use a convenience sample of blood donors to show that by June, 
one month after the epidemic peak in Manaus, capital of Amazonas state, 44% of the population had 
detectable IgG antibodies. Correcting for cases without a detectable antibody response and antibody 
waning, we estimate a 66% attack rate in June, rising to 76% in October. This is higher than in São Paulo, 
in southeastern Brazil, where the estimated attack rate in October is 29%. These results confirm that, 
when poorly controlled, COVID-19 can infect a high fraction of the population causing high mortality. 
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immunity threshold, or because of other factors such as be-
havioral changes and NPIs. We compare data from Manaus 
with findings from Sao Paulo, where the first Brazilian 
COVID-19 cases were detected (2, 6) and the rise and fall in 
mortality were slower and more protracted. 

We used a chemiluminescence assay (CIMA) that de-
tects IgG antibody against the SARS-CoV-2 nucleocapsid (N) 
protein (Abbott, Chicago, USA). To infer the attack rate 
from antibody test positivity we need to account for the sen-
sitivity and specificity of the test (7). The specificity of the 
CIMA is high (>99.0%) (8–10), but previous high (>90.0%) 
sensitivity estimates (8, 10)) may not apply to blood donor 
screening (11, 12) for two reasons. First, most SARS-CoV-2 
infections in blood donors are asymptomatic and weaker 
antibody responses in asymptomatic disease (13) may lead 
to a lower initial seroconversion rate (i.e., more “serosilent” 
infections). Second, due to antibody waning, sensitivity falls 
over time (14), such that test positivity increasingly underes-
timates the true attack rate. 

We used a variety of clinical samples at different time 
points to gain insight into the dynamics of the anti-N IgG 
detected by the Abbott CIMA (Fig. 1). In samples from 
COVID-19 hospitalized patients collected at 20-33 days post 
symptom onset, reflecting high disease severity and optimal 
timing of blood collection, sensitivity was 91.8% (95% confi-
dence interval, CI, 80.8% to 96.8%), suggesting that ~8% of 
severe convalescent cases do not develop detectable antibod-
ies. Among a cohort of symptomatic cases with mild disease 
also tested in the early convalescent period, sensitivity fell 
to 84.5% (95% CI 78.7% to 88.9%) – indicating initial sero-
conversion is lower in milder cases. In samples drawn later 
(50 to 131 days) from the same mild disease cohort, sensitiv-
ity was lower still (80.4%, 95% CI 71.8% to 86.8%), reflecting 
antibody waning. Indeed, in a subset of 104 patients with 
two consecutive blood draws, the signal-to-cutoff (S/C) de-
clined over the period observed (Fig. 1B) and among 88 in-
dividuals with a positive reading at the first time point, the 
mean rate of decay was –0.9 log2 S/C units every 100 days 
(95% CI –1.1 to –0.75), equating to a half-life of 106 days 
(95% CI 89 to 132 days) (Fig. 1C). 

Finally, we tested 1,000 blood donations given in São 
Paulo in July 2020 in parallel using a second high-specificity 
(>99.0% (15)) immunoassay less prone to antibody waning 
(14). (Roche Elecsys, Rotkreuz, Switzerland). One-hundred 
and three samples were positive using the Abbott CIMA and 
an additional 30 were positive using the Roche assay. As-
suming all 133 samples were true positives the sensitivity of 
the Abbott N IgG assay was 77.4% (95% CI 69.6% to 83.7%) 
on asymptomatic blood donor samples. As samples in July 
were donated four months into the ongoing epidemic in São 
Paulo, the false negatives using the Abbott assay include 
both cases that did not initially seroconvert, as well as past 

infections that had subsequently seroreverted. 
Because specificity was high, with only one false-

positive result in 821 pre-epidemic donations from Manaus 
(Fig. 1A), we also attempted to improve assay performance 
by reducing the threshold for a positive result from 1.4 S/C 
(as per the manufacturer) to 0.4 S/C. This resulted in 27 
false-positives and a specificity of 96.7%, but substantially 
improved sensitivities at this threshold as shown in Fig. 1A 
and table S1. 

In order to estimate the proportion of the population 
with IgG antibodies against SARS-CoV-2, we used a conven-
ience sample of routine blood donations made at the 
Fundação Pró-Sangue blood bank in São Paulo and the 
Fundação Hospitalar de Hematologia e Hemoterapia do 
Amazonas (HEMOAM) in Manaus. The monthly sample size 
and sampling dates, spanning February to October, are 
shown in table S2. 

The prevalence of SARS-CoV-2 antibodies in February 
and March was low (<1%) in both São Paulo and Manaus. 
This is consistent with the timing of the first confirmed cas-
es that were diagnosed on 13th March in Manaus, and on the 
25th of February in São Paulo (2). In Manaus, after adjust-
ment for the sensitivity and specificity of the test (but not 
antibody waning), and re-weighting for age and sex, the 
prevalence of SARS-CoV-2 IgG antibodies was 4.8% (95% CI 
3.3% to 6.8%) in April, 44.5% (95% CI 39.2% to 50.0%) in 
May, reaching a peak of 52.5% (47.6% to 57.5%) in June (Fig. 
2 and table S2). The increasing seroprevalence closely fol-
lowed the curve of cumulative deaths. In São Paulo the 
prevalence of SARS-CoV-2 IgG in blood donors also in-
creased steadily, reaching 13.6% (95% CI 12.0% to 8.1%) in 
June. 

Between June and October, the effect of seroreversion 
became apparent in both cities. In Manaus, following the 
peak antibody prevalence in June, the proportion of blood 
donors that tested positive fell steadily to 25.8% in October. 
Excluding extreme negative samples (<0.4 S/C), the median 
assay signal fell steadily from May: 3.9 (May), 3.5 (June), 2.3 
(July), 1.7 (August), 1.4 (September), and 1.3 (October) (Fig. 
2B). Similarly, in São Paulo antibody prevalence remained 
stable between June and October, while the number of daily 
COVID-19 deaths also remained relatively stable, reflecting a 
balance between antibody waning from infections earlier in 
the outbreak and seroconversions following recent infec-
tions (Fig. 2C). 

In Manaus, the effect of antibody waning on apparent 
prevalence was partially ameliorated by reducing the 
threshold for a positive result from 1.4 S/C to 0.4 S/C and 
correcting for the resulting increased false-positive rate. 
However, the results in São Paulo were largely unchanged 
by this correction (Fig. 2 and table S2). 

We further correct for seroreversion with a model-based 
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approach (see supplementary materials). Briefly, we assume 
that the probability of remaining seropositive decays expo-
nentially from the time of recovery. We estimate the decay 
rate and the proportion of patients that serorevert using the 
seroprevalence data from Manaus to find the minimum de-
cay rate that minimizes the number of new cases in July 
and August while avoiding decreases in prevalence – i.e., 
assuming there were few cases in Manaus in July and Au-
gust and changes in seroprevalence were due mainly to 
waning antibodies. The results of these corrections are 
shown in Fig. 2 and table S2. After adjusting for serorever-
sion, we find that cumulative incidence in Manaus may have 
reached as high as 66.2% (95% CI 61.5% to 80.1%) in July 
and 76.0% (95% CI 66.6% to 97.9%) in October. Although 
this is the minimum prevalence estimate allowed by the 
exponential decay model, and should therefore be conserva-
tive, in the absence of an accepted approach to account for 
seroreversion, these results should be interpreted with cau-
tion. The reliability of this estimate depends on the validity 
of the exponential decay assumption. 

To calculate infection fatality ratios (IFRs) we used the 
age-sex and sensitivity-specificity adjusted prevalence in 
June, as this was following the epidemic peak in Manaus, 
but before significant seroreversion. In Manaus, the IFRs 
were 0.17% and 0.28%, considering PCR confirmed COVID-
19 deaths and probable COVID-19 deaths based on syndrom-
ic identification, respectively; whereas in São Paulo, the 
global IFRs were 0.46% and 0.72%, respectively. The differ-
ence may be explained by an older population structure in 
São Paulo (fig. S1A). Supporting this inference, the age-
specific IFRs were similar in the two cities, and similar to 
estimates based on data from China (16) (fig. S1B) and a 
recent systematic review (17). We also obtained similar age-
specific IFRs using the seroreversion-corrected prevalence 
estimates from October (fig. S1). 

Blood donors may not be representative of the wider 
population. The eligible age range for blood donation in 
Brazil (16 - 69yr), as well as sex distributions in donors, are 
different from the underlying populations in both cities (fig. 
S2). Re-weighting our estimates for age and sex (Fig. 2 and 
table S2) resulted in a slight reduction in prevalence, partic-
ularly in Manaus, where men were overrepresented among 
donors and also had a higher seroprevalence (fig. S3). Self-
reported ethnicity was similar in donors to the census popu-
lations (fig. S2). The median income in blood donors’ census 
tracts of residence was marginally higher than a population-
weighted average for both cities (fig. S4). Regarding the spa-
tial distribution of donors, there was a similar antibody 
prevalence across different regions sampled in both cities 
(fig. S5), and we achieved good geographic coverage in both 
cities (see supplementary materials and fig. S5). 

Because potential donors are deferred if they have a 

positive SARS-CoV-2 PCR or clinical diagnosis of COVID-19, 
increasing access to testing might have reduced the pool of 
eligible donors through time. However, only 2.7% of resi-
dents in Manaus and 8.5% in São Paulo reported having a 
PCR test performed by September (fig. S6). As such, chang-
ing access to testing is unlikely to have been important. 
Considering these factors together, we suggest that our re-
sults can be cautiously extrapolated to the population aged 
16-69yr in Manaus and São Paulo. Within this group, blood 
donors may underestimate the true exposure to SARS-CoV-2 
due to a potentially higher socioeconomic profile, deferral of 
symptomatic donors, and the possibility of greater health 
awareness and engagement among those that donate blood. 
However, it is likely that seroprevalence in children and 
older adults is lower. 

Our results show that between 44% and 66% of the 
population of Manaus was infected with SARS-CoV-2 by 
July, following the epidemic peak there. The lower estimate 
does not account for false-negative cases or antibody wan-
ing; the upper estimate accounts for both. Rt fell < 1 (fig. S7) 
in late April when cumulative infections were between 5% 
and 46% of the population. NPIs (table S3) were imple-
mented in mid to late March when physical distancing also 
increased (fig. S8). It is likely that these factors worked in 
tandem with growing population immunity to contain the 
epidemic. Transmission has since continued in Manaus, 
albeit at a lower level than in April-May (Fig. 2 and fig. S7). 
From the second week of August there has been a small in-
crease in the number of cases (18) which, at the time of writ-
ing, has begun to decline. Consequently, the attack rate rose 
to 76% in October. This remains lower than predicted in a 
homogeneously-mixed population with no mitigation strat-
egies (~90%). Homogeneous mixing is unlikely to be a valid 
assumption (19) and behavioral change and NPIs may ex-
plain why the estimated final epidemic size has not yet 
reached 89–94% as expected for R0 values between 2.5–3.0 
(4). 

By 1st October, Manaus recorded 2,642 (1,193/million 
inhabitants [mil]) COVID-19 confirmed deaths and 3,789 
(1,710/mil) severe acute respiratory syndrome deaths; São 
Paulo recorded 12,988 (1,070/mil) and 20,063 (1,652/mil), 
respectively. The cumulative mortality proportions were 
similar in both cities and high compared to other locations 
– e.g., United Kingdom (620/mil), France (490/mil) or the 
United States (625/mil), as of Oct 1st (20). The different at-
tack rates in Manaus and São Paulo (76% versus 29% of 
people infected), despite similar overall mortality rates, are 
due to the higher IFR in São Paulo. The age-standardized 
mortality ratio was 2.0 comparing observed deaths in Ma-
naus to those expected projecting the age-specific mortality 
in São Paulo on the age structure of Manaus. The R0 was 
similar in the two cities (fig. S7) but cases and deaths in-
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creased then decreased more slowly in São Paulo than Ma-
naus where the rise and fall was more abrupt (fig. S7). The 
lower attack rate in São Paulo is partly explained by the 
larger population size (2.2 versus 12.2 million inhabitants). 
As population size increases, the time to reach a given at-
tack rate also increases (21). 

The attack rate in Manaus is higher than estimates 
based on seroprevalence studies conducted in Europe and 
North America (8, 22, 23), and recent results from Kenyan 
blood donors (24). A similarly high seroprevalence (~50%) 
was observed in slums in Mumbai, India (25). In Brazil, one 
population-based serosurvey in São Paulo (26) found a simi-
lar prevalence to our study (26.2% versus 28.8% in blood 
donors, in October). In Manaus, a lower seroprevalence 
(14%, in June) was found in a random household sample of 
250 people (1). But this study was not powered at the city 
level and used the lower sensitivity Wondfo (27) rapid test. 
As such, the results are not be directly comparable. 

Future investigations should be conducted to investi-
gate what accounted for such extensive transmission of 
SARS-CoV-2 in Manaus. Possible explanations include soci-
oeconomic conditions, household crowding (28), limited 
access to clean water, and reliance on high-transmission 
risk boat travel (1) in which over-crowding results in accel-
erated contagion, similar to that seen on cruise ships (29). 
The young mobile population with potentially low pre-
existing immunity to SARS-CoV-2 (30), as well as the early 
circulation of multiple virus lineages introduced from mul-
tiple locations may have contributed to the large scale of the 
outbreak. 

In conclusion, our data show that >70% of the popula-
tion has been infected in Manaus approximately seven 
months after the virus first arrived in the city. This is above 
the theoretical herd immunity threshold. However, prior 
infection may not confer long-lasting immunity (30, 31). 
Indeed, we observed rapid antibody waning in Manaus, 
consistent with other reports that have shown signal waning 
on the Abbott IgG assay (14, 32). However, other commer-
cial assays, with different designs or targeting different an-
tigens, have more stable signal (14), and there is evidence 
for a robust neutralizing antibody response several months 
out from infection (33). Rare reports of reinfection have 
been confirmed (34), but the frequency of its occurrence 
remains an open question (35). Manaus represents a “senti-
nel” population, giving us a data-based indication of what 
may happen if SARS-CoV-2 is allowed to spread largely un-
mitigated. Further seroepidemiological, molecular and ge-
nomic surveillance studies in the region are required 
urgently to determine the longevity of population immunity, 
the correlation with the observed antibody waning and the 
diversity of circulating lineages. Monitoring of new cases 
and the ratio of local versus imported cases will also be vital 

to understand the extent to which population immunity 
might prevent future transmission, and the potential need 
for booster vaccinations to bolster protective immunity. 
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Fig. 1. Abbott SARS-CoV-2 N IgG chemiluminescence assay performance and antibody dynamics in different 
clinical samples. (A) Signal-to-cutoff (S/C) values using the Abbott chemiluminescence assay (CIMA) in the following 
clinical samples (from left to right): 821 routine blood donation samples from Manaus in February 2020, > 1 month prior 
to the first notified case in the city; 49 samples collected at 20-33 days after symptom onset from SARS-CoV-2-PCR 
positive patients in São Paulo requiring hospital care; 193 patients in São Paulo with PCR-confirmed symptomatic 
COVID-19 not requiring hospital care, with plasma donation samples taken in the early convalescent period; 107 samples 
from the same non-hospitalized plasma donor cohort from the late convalescent period; 133 samples that tested 
positive on either the Abbott CIMA or the Roche Elecsys assay out of 1,000 routine blood donations collected in July 
2020 and tested in parallel from the Fundação Pró-Sangue blood center (São Paulo). Upper dashed line - 
manufacturer’s threshold for positive result of 1.4 S/C; lower dashed line - alternative threshold of 0.4 S/C. Box plots of 
Abbott IgG CIMA S/C central line is the median; upper and lower hinges are the 25th and 75th centiles, respectively; 
whiskers show the range, extending to a maximum of 1.5 times interquartile range from hinge. (B) S/C values of the 
Abbott CIMA for 104 convalescent plasma donors who were sampled at two different times. (C) Histogram of the slopes 
among 88 individuals shown in (B) that tested positive (>1.4 S/C) at the first time point. POS = post onset of symptoms. 
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Fig. 2. Monthly antibody prevalence and signal-to-cutoff (S/C) reading in Manaus and São Paulo. (A and C) SARS-
CoV-2 antibody prevalence estimates in Manaus (A) and São Paulo (C) with a range of corrections, from left to right: re-
weighting positive tests, at positivity threshold of 1.4 S/C, to the age-sex distribution of each city; further correcting for 
sensitivity and specificity at this assay threshold; re-weighting positive tests at for age and sex at a reduced threshold of 
0.4 S/C; correcting for sensitivity and specificity at this threshold; finally correcting for seroreversion. Error bars are 
95% confidence intervals. Grey bars are standardized daily mortality using confirmed COVID-19 deaths from the SIVEP-
Gripe (https://covid.saude.gov.br/) notification system and standardized by the direct method using the total projected 
Brazilian population for 2020 as reference. Black lines are rescaled cumulative deaths, such that the maximum is set to 
the maximum seroprevalence estimate for each city. Mortality data are plotted according to the date of death. (B and D) 
Distribution of S/C values over the seven monthly samples are shown for Manaus (B) and São Paulo (D). Each point 
represents the S/C reading for a single donation sample. Upper dashed line - manufacturer’s threshold (1.4 S/C units); 
lower dashed line - alternative threshold (0.4 S/C units); black boxplots show the median (central lines), interquartile 
range (hinges) and range extending to 1.5 times the interquartile range from each hinge (whiskers) of S/C values above 
0.4 (i.e., excluding very low and likely true-negative values). 
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